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D-G Group Research Overview

◮ Renewable Resources Integration

◮ Impact of wind integration on system dynamic performance
◮ Stochastic models of PV systems for quantification of reliability/energy-yield

◮ Health Monitoring and Fault Diagnosis of Electrical Energy Systems

◮ Fault detection and isolation algorithms for FACTS devices
◮ Health monitoring of micro-grids and other small-footprint power systems

◮ Reliability Models for Next Generation Electric Power Grids

◮ Impacts of coupling between the system cyber and physical layers
◮ Impacts of coupling between system dynamics and component stress

◮ Coordination and Control of Distributed Energy Resources

◮ Distributed reactive power support for voltage control
◮ Distributed energy storage for frequency and peak-shaving control
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The Potential of Distributed Energy

Resources (DERs)

◮ On the power grid, there exist many DERs that can be potentially

used to provide ancillary services

◮ Power electronics grid interfaces commonly used in DERs can be

utilized to provide reactive power support

◮ Voltage control in subtransmission and distribution

◮ Plug-in-hybrid vehicles (PHEV) can be utilized for providing active
power for up and down regulation

◮ Energy peak-shaving during peak hours and load-leveling at
night
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Control and Coordination of DERs

◮ Proper coordination and control of these DERs is key for enabling

their utilization for ancillary services

◮ One solution can be achieved through a centralized control strategy

where each DER is commanded from a central controller

◮ It is necessary to overlay a communication network connecting

the central controller with each distributed resource
◮ It requires knowledge of the distributed resources that are

available on the distribution side at any given time

◮ We propose an alternative approach that utilizes distributed

strategies for control and coordination of DERs

◮ These strategies offer several advantages, including the following

◮ More economical as they do not require communication

infrastructure between a centralized controller and the various

devices
◮ They do not require complete knowledge of the distributed

resources available
◮ Potentially more resilient to faults and/or unpredictable

behavioral patterns by the distributed resources
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Basic Setup

◮ The DERs can be thought of as nodes in a network, where each

node can exchange information with neighboring nodes

◮ Through an iterative process with neighboring nodes (presumable

nodes in close proximity)

◮ Each DER in the network will compute the amount of active or
reactive power that it needs to provide

◮ Collectively, the local control decisions made by the resources

should have the same effect as the centralized control strategy (or, if

multiple solutions are possible, be one of the feasible solutions)

◮ Such a solution could rely on inexpensive and simple communication

protocols, e.g., ZigBee technology

◮ We discuss several algorithms to solve this coordination/cooperation

problem under various conditions

7 / 31



Outline

Introduction

Mathematical Preliminaries

Distributed Control with Unconstrained Node Capacity

Distributed Control with Constrained Node Capacity

Voltage Control in Subtransmission Networks

Concluding Remarks

8 / 31



Graph-Theoretic Notions

◮ The exchange of information between nodes where resources are

located can be described by a directed graph G = {V,E}:

◮ V = {1, 2, . . . , n} is the vertex set (each vertex corresponds to a node)
◮ E ⊆ V ×V is the set of directed edges, where (j, i) ∈ E if node j can receive

information from node i

◮ The graph is undirected if and only if whenever (j, i) ∈ E, then also

(i, j) ∈ E, i.e., if node j can receive information from node i, then node

i can also receive information from node j

◮ All nodes that can transmit information to node j are said to be

neighbors of node j and are represented by the set

Nj = {i ∈ V : (j, i) ∈ E}

◮ The number of neighbors of j is called the in-degree of j and denoted

by D−
j
= |Nj|

◮ The number of nodes that have j as neighbor, i.e., j can transmit

information to these nodes, is called the out-degree of j and is

denoted by D+
j

◮ In undirected graphs, D−
j
= D+

j
for all nodes j
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Distributed Algorithms Formulation
◮ Let πj[k] be the amount of active or reactive power demanded from

the distributed resource located in node j at the k round of

information exchange between nodes

◮ The proposed distributed algorithms determine the amount of

resource that will be contributed by node j by performing linear

iterations of the form

πj[k + 1] = pjj[k]πj[k] +
∑

i∈Nj

pji[k]πi[k], (1)

where the pji[k]’s are a set of (potentially time-varying) weights, and

πj[k]’s are non-negative quantities

◮ Each node updates its demanded amount to be a linear combination

of its own demanded amount and the demanded amount of its

neighbors

◮ The choice of pji[k]’s will depend on the problem constraints

◮ We provide algorithms when
◮ There is no limit on the amount of active or reactive power that each resource

can provide
◮ The maximum (or minimum) amount of active or reactive power each resource

can provide is limited
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The Basic Setup

◮ There is a leading node that knows the total amount of active or reactive

power ρd that needs to be provided by the remaining n nodes

◮ This leader can communicate with l ≥ 1 nodes, and initially sends a

command demanding ρd/l units of active or reactive power from each of

them

◮ Unless ρd changes, the leader will not subsequently communicate with the

nodes

◮ Let πj[k] be the active or reactive power demanded from node j at step k,

and define the corresponding active or reactive power demand vector as

π[k] = [π1[k], π2[k], . . . , πj[k], . . . , πn[k]]′

◮ Define the collective active or reactive power demand as ρ[k] =
∑n

j=1 πj[k]

◮ The objective is to design a distributed iterative algorithm that, at step k,
updates the active or reactive power demand from node j based on

◮ Its own current active or reactive power demand πj[k]
◮ Current active or reactive power demanded from neighbors of j

such that after m steps the collective active or reactive power demand

equals the total active or reactive power demanded by the leader:

ρ[m] =
∑n

j=1 πj[m] = ρd
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Uneven Splitting Algorithm

◮ The simplest solution, which results in constant weights pji, is for each node

j to equally split its current value among itself and the nodes that have j as

neighbor

πj[k + 1] =
1

1 +D+
j

πj[k] +
∑

i∈Nj

1

1 +D+
i

πi[k] (2)

where D+i the number of nodes that i can transmit information to (the

out-degree of node i)

◮ Algorithm (2) does not necessarily split the total active or reactive power

demand ρd evenly among all the nodes, but it ensures that
∑N

j=1 πj[k] = ρd, ∀k ≥ 0

◮ Provided the directed graph describing the exchanges between nodes has a

single recurrent class, which necessarily makes it aperiodic by construction

due to the fact that 1

1+D+
j
, 0, the steady state solution provided by (2) is

unique
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Sketch of Convergence Proof
◮ The splitting algorithm (2) can be rewritten in matrix form as

π[k + 1] = Pcπ[k],

π[0] = π0, (3)

where π0 = [π1[0], π2[0], . . . , πj[0], . . . , πn[0]]′ with πi[0] = ρd/l if i is a

neighbor of the leader node and πi[0] = 0 otherwise
◮ By construction, matrix Pc is column stochastic and also primitive
◮ The Perron-Frobenius theorem for non-negative matrices states that Pc has

a unique eigenvalue with largest modulus at λ1 = 1

◮ Let x be a right eigenvector of Pc associated with λ1 and let y be a left

eigenvector of Pc associated with λ1 such that x′y = 1

◮ Again, from the fact that Pc is column stochastic, the entries of vector y must

be all equal
◮ Without loss of generality, let y = [1, 1, . . . , 1]′, and since x′y = 1, the entries

of x must add up to one
◮ Then the steady-state solution of (3) is given by

πss
= xy′π0 =

(

N
∑

j=1

πj[0]
)

x. (4)

◮ Since
∑N

j=1 πj[0] = ρd and the entries of x are nonnegative and add up to one,

it follows that entries of πss are nonnegative and add up to ρd
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Uneven Splitting Example
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(a) Network topology.
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(b) Node demanded capacity evolution.

Figure: Four-node network implementing uneven splitting strategy.

◮ The leader initially splits ρd = 1 in half and passes it to nodes 1 and 2.
◮ Each node updates its value as follows

π1[k + 1] = 1

3

(

π1[k] + π2[k] + π3[k]
)

,

π2[k + 1] = 1

3

(

π1[k] + π2[k]
)

+
1

2
π4[k],

π3[k + 1] = 1

3

(

π1[k] + π3[k]
)

,

π4[k + 1] = 1

3

(

π2[k] + π3[k]
)

+
1

2
π4[k], (5)

with π1[0] = π2[0] = 1/2, and π3[0] = π4[0] = 0.
◮ The steady-state solution is given by πss

= [0.23, 0.35, 0.11, 0.31]′
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Even Splitting Algorithm

◮ A solution to reach even splitting can be easily obtained when
n
∑

i=1

pji =

n
∑

i=1

pij = 1 for all j = 1, 2, . . . , n

◮ The simplest realization of such algorithm is obtained when the graph

describing the exchanges of information is undirected, which results in

D−j = D
+

j := Dj, ∀j = 1, . . . , n

◮ Define the maximum degree of the network as D = max
j
{Dj}

◮ One way even splitting can be achieved is by having each node j update its

value as follows

πj[k + 1] =
(

1 −
|Nj |

1 +D

)

πj[k] +
∑

i∈Nj

1

1 +D
πi[k], (6)

where |Nj| = D
+

j denotes the number of elements in the set Nj

◮ Even splitting can also be achieved if instead of D, we use any upper bound

D′ ≥ D in (6)
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Even Splitting Example
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(b) Node demanded capacity evolution.

Figure: Four-node network implementing even splitting strategy.

◮ Each node updates its value as follows

π1[k + 1] = 1

3

(

π1[k] + π2[k] + π3[k]
)

,

π2[k + 1] = 1

3

(

π1[k] + π2[k]
)

+
1

2
π4[k],

π3[k + 1] = 1

3
π1[k] + 1

3
π3[k],

π4[k + 1] = 1

3
π2[k] + 2

3
π4[k], (7)

with π1[0] = π2[0] = 1/2, and π3[0] = π4[0] = 0.
◮ The steady-state solution is πss

= [0.25, 0.25, 0.25, 0.25]′

◮ The key is that the corresponding transition matrix is doubly stochastic
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The Setup

◮ We now address the case where nodes have limits on the amounts of active

or reactive power they can provide

◮ Let πmax
j

, for j = 1, 2, . . . , n, be the maximum active or reactive power that

node j can provide (its maximum capacity)

◮ Define the corresponding maximum active or reactive power capacity vector

as πmax
= [πmax

1
, πmax

2
, . . . , πmax

n ]′.

◮ Let ρ[k] =
∑n

j=1 πj[k] be the collective active or reactive power capacity

demanded from the nodes at instant k, and ρd be the collective active or

reactive power demand.

◮ We assume that ρd ≤
∑n

j=1
πmax

j
:= χmax

◮ The objective is to design a distributed iterative algorithm that, at step k,

updates the active or reactive power demanded from node j based on

◮ Current active or reactive power demand πj[k]
◮ Current active or reactive power demanded by neighbors of j

such that after m steps:

◮ πj[m] reaches a steady state value πs
j
≤ πmax

j
,∀j

◮

∑n
j=1
πss

j
= ρd ≤ χ

max
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Fair Splitting Algorithm
◮ A simple solution to the constrained problem can be obtained if each node

could compute (or knows) the ratio ρd/χ
max

◮ Then, the total active or reactive power demand can be collectively provided

by having each node j provide

πj :=
ρd
χmax π

max
j ≤ πmax

j (8)

◮ This can be achieved if the nodes run twice (with appropriate initial

conditions) the following algorithm

πj[k + 1] =
1

1 +D+j
πj[k] +

∑

i∈Nj

1

1 +D+i
πi[k]. (9)

◮ Let π̂[k] denote the solution to (9) achieved with initial conditions set to

initially demanded capacity
◮ Let π̌[k] denote the solution to (9) achieved with initial conditions set to

maximum capacities
◮ At each iteration step, each node j computes

πj[k] =
π̂j[k]

π̌j[k]
πmax

j
(10)

◮ Then

lim
k→∞
πj[k] = lim

k→∞

π̂j[k]

π̌j[k]
πmax

j =

ρd

χmax
πmax

j = πj (11)
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Sketch of Convergence Proof
◮ As before, the linear iteration in (9) can be rewritten in matrix form as

π[k + 1] = Pcπ[k], (12)

◮ By construction, matrix Pc is column stochastic and also primitive (assuming

the graph is strongly connected)

◮ Since Pc is column stochastic, it follows that

∑N
j=1 π̂j[k] = ρd,

∑N
j=1 π̌j[k] = χmax, ∀k. (13)

◮ Since Pc is primitive, Perron-Frobenius ensures that

π̂ss
j := lim

k→∞
π̂j[k] = α lim

k→∞
π̌j[k] =: απ̌ss

j , ∀j, for some α > 0

◮ Thus, ρd =
∑N

j=1 π̂
ss
j
= α
∑N

j=1 π̌
ss
j
= αχmax, and therefore

α =
ρd

χmax
. (14)

◮ Then, the contribution π[k] of each will asymptotically converge to the

desired value πj

π[k] = lim
k→∞

π̂j[k]

π̌j[k]
πmax

j =

π̂ss
j

π̌ss
j

πmax
j = απmax

j =

ρd

χmax
πmax

j = πj. (15)
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Fair Splitting Example
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(b) Evolution of π̌j in the algorithm second run.

Figure: Four-node network implementing even splitting strategy.

◮ Take ρd = 1 and πmax
= [0.4, 0.2, 0.4, 0.1] so that χmax

= 1.1 > ρd

◮ Each node runs twice (in parallel) the same algorithm used in the even
splitting example

◮ For the first run, initial conditions are π̂[0] = [0.5, 0.5, 0, 0]′

◮ For the second run, initial conditions are π̌[0] = πmax
= [0.4, 0.2, 0.4, 0.1]′

◮ The solution of the first run is equivalent to the solution of the even splitting

algorithm example, i.e., each node computes ρd/4 = 0.25

◮ On the second run, each node computes
∑4

j=1 π
max
j /4 = 0.275

◮ The contributions are π = α[0.4, 0.2, 0.4, 0.1]′, where α = 0.25/0.275
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Reactive Power Support

Distributed reactive 

power resources

q1 q4

q2
qn

0Control
+
_

+

V1∠θ1

V2∠θ2

Vp∠θp

Vp+1∠θp+1

Vs∠θs

Vt∠θt

V
ref
s

Vs

Qd
s =

∑

j

qj

Qd
s

P1 + jQ1

P2 + jQ2

Pp + jQp

Pp+1 + jQp+1

Pt + jQt

Ps + jQs

+

P d
s

(Ps + P d

s ) + j(Qs + Qd

s)

ρd

q3

qi

q5

Power Network

◮ Operational conditions require the voltage at bus s of the electrical network

to be maintained at a reference voltage V
ref
s

◮ In order to achieve this requirement, we control the total reactive power
demand at bus s, which is given by Qs+Qd

s , where
◮ Qs is the reactive power injected in bus s provided by the network, and
◮ Qd

s is the reactive power injected in bus s provided by DERs

◮ By controlling Qd
s , the total demand of reactive power at bus s can be

effectively controlled

24 / 31



WECC 3-machine 6-bus system

From To R X

1 4 0 0.0720

2 4 0 0.1008

1 5 0 0.1610

2 6 0 0.1700

3 5 0 0.0850

3 6 0 0.0920

◮ We implement two control architectures:
◮ All load buses can provide reactive power through coordination of DERs
◮ Only bus 6 can provide reactive power through coordination of DERs

◮ For each of the architectures, we implement distributed coordination
algorithms with and without constraints on DER capacity

◮ For simplicity, we assume the same DER network with four nodes showed in
previous slides

◮ We compare the performance of control architectures and distributed

algorithms for a contingency in generator 2
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Base Case: No Reactive Power Support
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Figure: Voltages before and after
contingency.

Bus # Pg Qg PL QL

1 1.5840 0.5388 0 0
2 0.8500 0.3458 0 0
3 0.7160 0.5500 0 0
4 0 0 1.00 0.35
5 0 0 1.25 0.50
6 0 0 0.90 0.30

Table: Pre-contingency power flow solution

◮ Prior to contingency: Generator 5 is at maximum capacity

◮ After contingency:
◮ Generator 5 becomes a PQ bus, and Generator 1 picks up all the reactive power

demand
◮ Voltages on buses 5 and 6 fall outside ±5% of the nominal value (1 p.u.)
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Voltage Control on All Load Buses
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(a) Unconstrained capacity.
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(b) Constrained capacity.

◮ With no constraints on DERs (unrealistic), system voltage profile is

recovered in 10s

◮ With constrains on DERs reactive power, system voltage profile is recovered
to acceptable limits

◮ Voltags on all buses are within ±5% of the nominal value (1 p.u.)
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Voltage Control on Load Bus 6
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(c) Unconstrained capacity.
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(d) Constrained capacity.

◮ Through sensitivity analysis, it can be shown that bus 6 voltage is the most
sensitive to loss of generator 2

◮ DER-based reactive power support is only available in this bus

◮ With no constraints on DERs
◮ Voltages on buses 3, 5, and 6 are very close to pre-contingency values
◮ Voltages on buses 2 and 4 are restored to values within ±5% of the nominal

value (1 p.u.)

◮ With constraints on DERs
◮ All bus Voltages are restored to values within ±5% of the nominal value (1 p.u.)
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Distributed Algorithm Performance
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(e) Non-Adapative Fair Splitting Algorithm.
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(f) Adapative Fair Splitting Algorithm.

◮ The non-adaptive algorithm converges much faster than the adaptive

algorithm (not discussed in the presentation)

◮ Both algorithms converge fast enough so the effect on the system is not
noticeable

◮ The adaptive algorithm has advantages if the DER network topology changes

◮ For larger DER networks, convergence speed of the distributed algorithms
might play an important role

◮ Careful analysis will be needed to justify the algorithm chosen
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Summary and Path Ahead

◮ We have presented distributed control algorithms that can be used to

determine (in a distributed fashion) the amount of active or reactive power

that needs to be provided by distributed active and reactive power resources

◮ These strategies have the potential to enable assets already present in

distribution systems as active and reactive power support resources

◮ We showed how these algorithms can be used to provide reactive power

support for voltage control

◮ Ongoing work is investigating convergence speed issues in different

algorithms for the constrained case

◮ Ongoing work is conducting case studies in larger networks, including

distribution networks

◮ Further work will investigate the algorithms performance in the presence of

faults, e.g., broken communication links, and nodes not updating their value
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